

Лекция 10

Тема Лекции: Биполярные транзисторы

к.ф.-м.н., PhD, ассоциированный профессор Тулегенова Аида Тулегенкызы

Цель лекции:

Изучить устройство, принцип работы и характеристики биполярных транзисторов, рассмотреть физические процессы, происходящие в областях эмиттера, базы и коллектора, а также зависимость тока и усилительных свойств транзистора от его параметров и режимов включения.

- Основные вопросы:

 1.
 Строение и типы биполярных транзисторов (p-n-p и n-p-n структуры).

 2.
 Назначение и функции эмиттера, базы и коллектора.

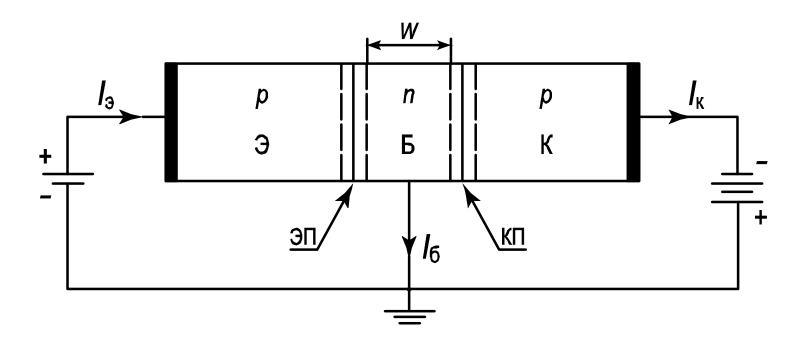
 3.
 Принцип действия транзистора и механизм усиления тока.

 4.
 Основные режимы работы транзистора: активый, насыщения, отсечки, инверсный.

 5.
 Вольтамперные характеристики и зависимость токов от напряжения.

 6.
 Основные параметры транзистора: коэффициенты усиления с и β, сопротивления, частотные свойства.

 7.
 Схемы включения транзистора: с общим эмиттером, базой и коллектором.

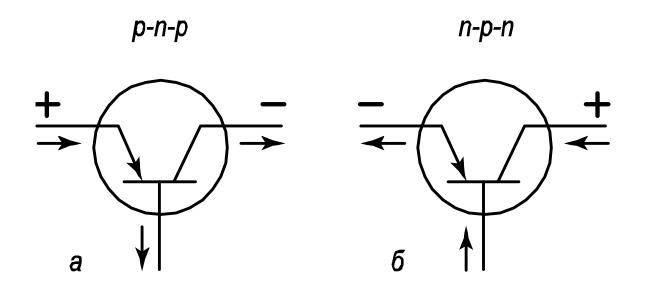

 8.
 Влияние температуры на характеристики и усилительные свойства

Введение

Транзистором называется полупроводниковый прибор с двумя электронно-дырочными переходами, предназначенный для усиления и генерирования электрических сигналов.

В транзисторе используются оба типа носителей – основные и неосновные, поэтому его называют биполярным

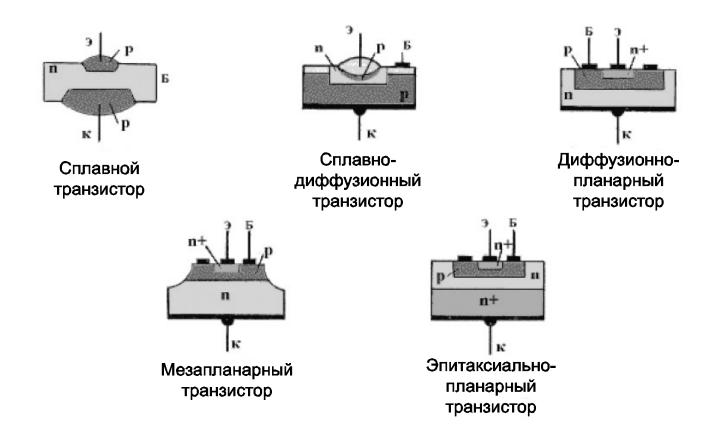
Биполярный транзистор состоит из трех областей монокристаллического полупроводника с разным типом проводимости: эмиттера, базы и

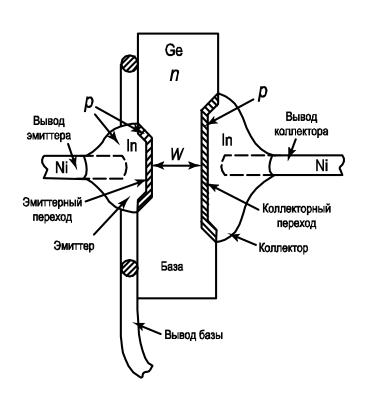


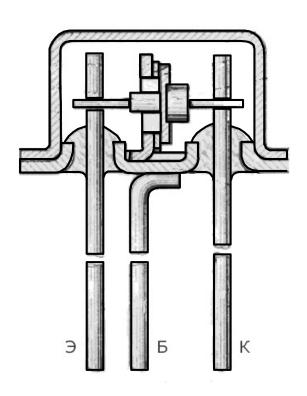
Схематическое изображение транзистора типа *p-n-p*:

 Θ – эмиттер, Γ – база, Γ – коллектор, Γ – толщина базы, Γ – эмиттерный переход, Γ – коллекторный переход

Переход, который образуется на границе эмиттер — база, называется эмиттерным, а на границе база — коллектор — коллекторным. В зависимости от типа проводимости крайних слоев различают транзисторы p-n-p и n-p-n.


Условные обозначения обоих типов транзисторов, рабочие полярности напряжений и направления токов показаны на рисунке


a) транзистор p-n-p, δ) транзистор n-p-n


По технологии изготовления транзисторы делятся на сплавные, планарные, а также диффузионно-сплавные, мезапланарные и эпитаксиально-планарные

Разновидности транзисторов по технологии изготовления

Конструктивно биполярные транзисторы оформляются в металлических, пластмассовых или керамических корпусах

Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:

- 1. Режим *отсечки* оба p-n перехода закрыты, при этом через транзистор обычно идет сравнительно небольшой ток;
 - 2. Режим *насыщения* оба *p-n* перехода открыты;
- 3. \mathbf{A} ктивный режим один из p-n переходов открыт, а другой закрыт.

В режиме отсечки и режиме насыщения управление транзистором невозможно. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы.

Область транзистора, расположенная между переходами, называется базой (Б). Примыкающие к базе области чаще всего делают неодинаковыми. Одну из них изготовляют так, чтобы из нее наиболее эффективно происходила инжекция в базу, а другую – так, чтобы соответствующий переход наилучшим образом осуществлял экстракцию инжектированных носителей из базы.

Область транзистора, основным назначением которой является инжекция носителей в базу, называют эмиттером (Э), а соответствующий переход – эмиттерным.

Область, основным назначением которой является экстракция носителей из базы, называют коллектором (К), а переход – коллекторным.

- Вопросы для контроля изучаемого материала:
 1. Из каких областей состоит биполярный транзистор и каково назначение каждой из них?
- 2. Какова физическая причина усилительного эффекта транзистора?3. Чем отличаются активный, насыщенный и отсечённый режимы работы?

- 4. Как связаны токи эмиттера, коллектора и базы?
 5. Что показывает коэффициент β и от чего он зависит?
 6. Нарисуйте и объясните выходные характеристики транзистора.
 7. Какие существуют схемы включения транзистора и в чём их различия?
- 8. Как влияет температура на параметры биполярного транзистора?

- Список литературных источников:
 1. Трифонов Е. Н. Электронные процессы в твёрдых телах. М.: Наука, 2015.
 2. Соколов В. И. Физика и технология полупроводников. М.: МИФИ, 2018.
- 3. Streetman, B. G., Banerjee, S. Solid State Électronic Devices. Prentice Hall, 2016. 4. Pierret, R. F. Semiconductor Device Fundamentals. Addison-Wesley, 1996. 5. Millman, J., Halkias, C. Electronic Devices and Circuits. McGraw-Hill, 2010.

- 6. Sze, S. M., Ng, K. K. Physics of Semiconductor Devices. Wiley, 2007.